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Late-season giant ragweed emergence in Ohio crop fields complicates decisions concerning the optimum time to
implement control measures. Our objectives were to develop a hydrothermal time emergence model for a late-emerging
biotype and validate the model in a variety of locations and burial environments. To develop the model, giant ragweed
seedlings were counted and removed weekly each growing season from 2000 to 2003 in a fallow field located in west
central Ohio. Weather data, soil characteristics and geographic location were used to predict soil thermal and moisture
conditions with the Soil Temperature and Moisture Model (STM2). Hydrothermal time (hHT) initiated March 1 and base
values were extrapolated from the literature (Tb 5 2 C, yb 5 210 MPa). Cumulative percent emergence initially
increased rapidly and reached 60% of maximum by late April (approximately 400 hHT), leveled off for a period in May,
and increased again at a lower rate before concluding in late July (approximately 2,300 hHT). The period in May when few
seedlings emerged was not subject to soil temperatures or water potentials less than the hHT base values. The biphasic
pattern of emergence was modeled with two successive Weibull models that were validated in 2005 in a tilled and a no-
tillage environment and in 2006 at a separate location in a no-tillage environment. Root-mean-square values for comparing
actual and model predicted cumulative emergence values ranged from 8.0 to 9.5%, indicating a high degree of accuracy.
This experiment demonstrated an approach to emergence modeling that can be used to forecast emergence on a local basis
according to weed biotype and easily obtainable soil and weather data.
Nomenclature: Giant ragweed, Ambrosia trifida L.
Key words: Weed ecology, weed management decision tool, soil moisture, soil temperature.

Models that estimate the timing of weed seedling
emergence are valuable management decision tools that can
be used to optimize weed control schedules (Forcella 1998).
Typically, seedling emergence models are developed by
making species-level assumptions about seed germination
(Benech-Arnold and Sánchez 1995; Forcella et al. 2000;
Grundy 2003), but, for many species, germination require-
ments vary among populations. For example, little mallow
(Malva parviflora L.) seeds from wetter regions of the
Australian wheat belt are highly dormant and require many
cycles of fluctuating temperatures for germination, whereas
little mallow seeds from drier regions of the Australian wheat
belt exhibit low levels of dormancy and require few cycles of
alternating temperatures for germination (Michael et al.
2006). Tall waterhemp [Amaranthus tuberculatus (Moq.)
Sauer] seeds from the western U.S. corn belt are highly
dormant and have prolonged stratification requirements for
germination, whereas common waterhemp seeds from the
eastern U.S. corn belt show reduced seed dormancy and
relatively short stratification requirements for germination
(Leon et al. 2006). Inherent differences in seed germination
among weed populations limit wide-scale applicability of
emergence forecasting tools.

The geographic limitations of emergence models were
demonstrated by Grundy et al. (2003), who tested a generic
model to predict emergence timing of common chickweed
[Stellaria media (L.) Vill.] seeds collected from across Europe.
Although they found general agreement between predicted
and observed common chickweed emergence, model accuracy

varied among populations. Here we improve emergence
predictions for local giant ragweed populations by accounting
for the inherent differences in seedling emergence periodicity
that occur among locations.

Giant ragweed is one of the most competitive and
troublesome weeds in the eastern U.S. corn belt (Gibson et
al. 2005; Harrison et al. 2001; Webster et al. 1994). In Ohio
crop fields, management of giant ragweed is difficult because
of a prolonged period of seedling emergence (Sprague et al.
2004), which allows giant ragweed to escape control measures
and compete with the crop. Harrison et al. (2001) determined
that giant ragweed seedlings that emerged 4 wk after corn
(Zea mays L.) emergence reduced yield at a rate of 1% per
weed per 10 m2 and added to the weed seedbank. Therefore,
effective giant ragweed management requires accurate predic-
tions of late-season seedling emergence.

Giant ragweed emergence periodicity is predicted by
WeedCast, a computer software program that provides
hydrothermal time emergence models for many weed species
common to the U.S. corn belt (Forcella 1998). Hydrothermal
time (hHT) is a growing degree day (GDD) measurement that
accumulates when daily average soil water potentials and
temperatures are greater than threshold values below which
seedling emergence cannot occur (Gummerson 1986). Users
of WeedCast provide their local soil conditions and local
weather data and the software gives predictions of seedling
emergence based on emergence characteristics of weed
populations sampled across the U.S. corn belt. The
populations that were studied during the development of
WeedCast were assumed to represent populations throughout
the region (Forcella 1998).

Giant ragweed seed germination requirements and seedling
emergence patterns differ among populations (Schutte et al.
2006a). Sprague et al. (2004) collected giant ragweed
‘‘involucral achenes’’ (hereafter called seeds) from across the
U.S. corn belt and buried them in a common garden. Seeds
that originated from the western U.S. corn belt (Iowa)
produced seedlings in a rapid flush during early April, whereas
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seeds that originated from the eastern U.S. corn belt (Illinois
and Ohio) produced seedlings in a more gradual flush that
extended into late July. The inherent differences in emergence
periodicity among giant ragweed populations confound
emergence predictions for the broad U.S. corn belt.
Specifically, the prolonged emergence period of giant ragweed
in Ohio is not described by hydrothermal time models in
WeedCast (Schutte, unpublished data).

The objectives of this research were (1) to develop a
hydrothermal time seedling emergence model for a giant
ragweed biotype with a prolonged period of seedling
emergence, and (2) to validate the model in a variety of
locations and burial environments.

Materials and Methods

Seedling Emergence Model Development. We used obser-
vations of giant ragweed seedling emergence and simulated soil
environments based on meteorological records, soil character-
istics and geographic locations to develop a giant ragweed
emergence model. An experiment was conducted during 2001,
2002, and 2003 at the Western Branch Experiment Station of
the Ohio Agricultural Research and Development Center near
South Charleston, OH (39u529N, 83u409W; elevation 340 m).
The study site was a no-tillage fallow field divided into four
replicates. The site had a 19-yr history of giant ragweed
infestation in a corn–soybean [Glycine max (L.) Merr.] rotation.
The soil was a Crosby silt loam (fine, mixed, active, mesic Aeric
Epiaqualf ) with 15% sand, 65% silt, 20% clay, and 2.2%
organic matter in the Ap horizon.

Quadrats were established at the beginning of each year and
were maintained free of vegetation by hand weeding.
Beginning March 1 and continuing to September 1, giant
ragweed seedlings in two 1-m2 quadrats per replicate were
counted and removed at weekly intervals. Seedling emergence
was defined as full expansion of cotyledons, and seedlings
were pulled from soil with minimal soil disturbance. Also at
weekly intervals, depth of emergence was determined for 10
seedlings per replicate. Seedling emergence depth was
measured by marking the soil boundary on the seedling
hypocotyl prior to removal, and then measuring the hypocotyl
length from the soil boundary to the root hair tuft after
removal. At the end of the year, weekly emergence
observations for each replicate were converted to cumulative
percent emergence. Mean cumulative emergence of 100%
indicated the day of final emergence.

Soil microclimate at the 1-cm depth was simulated by the
Soil Temperature and Moisture Model (STM2) (Spokas et al.
2007). STM2 establishes a one-dimensional vertical profile
from the soil surface down to 1.8 m, sectioned into discrete
nodes to define soil microclimates at specific depths. Fluxes
in and out of the system are primarily governed by
atmospheric conditions at the soil surface. STM2 simulates
incident solar radiation with SolarCalc, a model that estimates
hourly solar radiation based on latitude, longitude, and
elevation of the field site, along with daily precipitation, and
daily minimum and maximum air temperatures (Spokas and
Forcella 2006). To estimate soil water potential, STM2

requires data on soil texture, soil organic matter, and initial
soil moisture. We assumed soil was saturated at the begin-
ning of the experiment. A summary of the total inputs for
STM2 include latitude, longitude, elevation, daily precipita-

tion, daily minimum and maximum temperature, soil texture,
and soil organic matter. Meteorological data for STM2 were
approximately 0.5 km from the study site and collected by a
weather station programmed to record atmospheric condi-
tions at 2 m every 5 min. In addition, temperature probes
linked to data loggers1 monitored soil temperatures at the 1-
cm depth within the research plots at 5-min intervals.

Simulated soil temperatures and water potentials were used
to calculate hydrothermal time (hHT) with the use of
Equation 1

hHT ~ hH
:hT ½1�

where hH 5 1 when y . yb, otherwise hH 5 0; and hT 5 T
2 Tb when T . Tb, otherwise hT 5 0. Daily average soil
water potential at 1 cm is represented by y, yb is base water
potential for seedling emergence, T is daily average soil
temperature at 1 cm, and Tb is base temperature for seedling
emergence (Roman et al. 2000); 2 C for giant ragweed (Abul-
Fatih and Bazzaz 1979). To estimate the base water potential
of giant ragweed emergence, we utilized the findings of Abul-
Fatih and Bazzaz (1979) in which giant ragweed seed
germination was measured along a gradient of soil water
content. We converted soil water content to soil water
potential from curves characteristic for the soil textures
reported in their study (Campbell 1977). Hydrothermal time
accumulated from March 1. Typically, giant ragweed
emergence begins mid- to late March in Ohio.

Mean cumulative percent emergence for each year was plotted
as a function of day of year with hydrothermal time
superimposed on the x-axis. To predict the pattern of seedling
emergence, cumulative percent emergence values were compared
to hydrothermal time with the Weibull function (Equation 2)

Y ~ M 1 { exp {k hHT { zð Þc½ �f g, ½2�
where Y is the cumulative percent emergence, M is the
asymptote, k is the rate of increase, hHT is hydrothermal time,
z is hHT of first emergence, and c is a curve shape parameter
(Brown and Mayer 1988). The Weibull function was fit to
observed emergence values through an iterative process in which
the following parameters were manually adjusted: asymptote
(M ), rate (k) lag phase (z), and curve shape (c), as well as the base
water potential for seedling emergence (yb). The model
parameters (k and c) were further adjusted by a nonlinear
regression procedure in SAS2 (PROC NLIN) that used the
Gauss–Newton algorithm. Agreement between predicted and
actual emergence values was determined with the root-mean-
square error (RMSE) (Equation 3)

RMSE ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=n

Xn

i ~ 1

x1 { y1ð Þ2
s

½3�

where xi represents actual cumulative percent seedling emer-
gence, yi is predicted cumulative percent seedling emergence,
and n is the number of observations (Mayer and Butler 1993).
RMSE provided a measurement of the typical difference
between predicted and actual values in units of percent seedling
emergence. The lowest RMSE value indicated that emergence
model fit had been optimized. The end result was a single model
that described seedling emergence for 2001, 2002, and 2003.

Emergence Model Validation. The seedling emergence
model was validated at South Charleston, OH in 2005 and
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at Columbus, OH in 2006. The South Charleston site
included tilled and no-tillage fields. The tilled field was chisel-
plowed in the fall prior to planting and received two passes
with a disk-harrow cultivator during the spring. The
Columbus site was a no-tillage field at The Ohio State
University Waterman Agricultural and Natural Resources
Laboratory (39u599N, 83u019W; elevation 240 km). Soil at
the Columbus site was a Kokomo silty clay loam (fine, mixed,
mesic Typic Argiaquolls) with 18% sand, 41% silt, 41% clay,
and 2.8% organic matter in the Ap horizon. At each site,
precipitation and air temperature at 2 m were recorded at 5-m
intervals by an on-site weather station. Validation environ-
ments were divided into four blocks. Within each block, giant
ragweed seedlings were counted and removed from two
permanent 1-m2 quadrats at weekly intervals that began March
1 and continued until September 1. Seedling emergence
observations for each replicate were converted to cumulative
percent of total emergence, averaged across replicates, and
plotted as a function of hydrothermal time. Hydrothermal time
was calculated with soil environment data from STM2.
Emergence pattern predictions based on hydrothermal time
were superimposed on plots of actual seedling emergence. The
difference between predicted and actual seedling emergence
values was assessed by RMSE (Equation 3).

Results and Discussion

Seedling Emergence Model Development. When examined
across years, the day of first emergence ranged from March 25
to April 5, and the day of final emergence ranged from July 24
to July 30. The general pattern of emergence was as follows:
rapid increase to 60% of maximum during April, then a lag in
early May, followed by an increase at a lower rate before
concluding in late July (Figure 1). The lag period in May was
indicated by a plateau in cumulative percent emergence and
was more pronounced during 2001 and 2003 than 2002.
However, emergence during all years was characterized by a

relatively quick flush followed a more gradual flush. This
biphasic pattern of emergence is consistent with Ohio
growers’ anecdotal reports of two giant ragweed seedling
emergence flushes during the growing season.

Causal factors for the biphasic pattern of emergence are not
yet understood. Harrison et al. (2007) determined that rates
of giant ragweed seed dormancy loss and germination timing
were influenced by the depth at which seeds were buried. But,
in this experiment, mean emergence depth for seedlings in the
first flush (1.31 6 0.10 cm) did not differ from mean
emergence depth for seedlings in the second flush (1.27 6
0.07 cm) (P 5 0.86). Therefore, the biphasic pattern of
emergence was not because of differential burial depths. Other
researchers have attributed interruptions in the progress of
cumulative percent emergence to suboptimal soil tempera-

Figure 1. Giant ragweed seedling emergence in a no-tillage, fallow field in South
Charleston, OH. The study site had a 19-yr history of giant ragweed infestation
in a corn–soybean rotation. Seedling emergence was determined at weekly
intervals from March 1 to September 1 during 2001, 2002, and 2003, but
seedlings were not found after July 30. Symbols represent observed emergence
and are the means of four replicates with standard errors.

Figure 2. Daily average soil temperatures (solid line) and weekly total
precipitation (shaded bars) at South Charleston, OH during the giant ragweed
emergence period. Soil temperatures at the 1-cm depth were determined every
5 min at four locations within the study site. Temperature data were averaged
across locations and daily average soil temperatures were calculated as [(minimum
temperature + maximum temperature)/2]. Precipitation data were collected
0.5 km from the study site.
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tures and moisture conditions (Benech-Arnold et al. 2000);
however, the period in May when few seedlings emerged was
not subject to soil temperatures less than the base temperature
for seedling emergence (2 C) or precipitation deficits
(Figure 2). Accordingly, hydrothermal time continued to
accumulate during May, and emergence showed a temporary
lag phase before resuming at a lower rate.

The biphasic pattern of emergence may have been a
consequence of seed-to-seed variation in hydrothermal time
requirements for seedling emergence. Typically, seed-to-seed
variation in germination behavior is continuous (Bradford
1996), and, as a result, cumulative seedling emergence in
response to hydrothermal time is described by a single
sigmoidal curve (for example, see Shrestha et al. 1999). Two
distinct emergence flushes suggest that subpopulations exist
within the seed population itself. Delayed emergence can be
adaptive in crop fields (Clements et al. 2004; Mortimer
1997), and thus the biphasic pattern of emergence may
represent an evolutionary response to agricultural selection
pressures. Along these lines, Hartnett et al. (1987) suggested
that giant ragweed populations evolved during old-field
succession to produce more seedlings earlier in the growing
season, and Schutte et al. (2006b) determined that emergence
patterns vary among giant ragweed phenotypes in agricultural
fields. To clarify the evolutionary significance and the origins
of the biphasic emergence pattern, subsequent research should
study the heritability of seedling emergence patterns in giant
ragweed.

A single, four-parameter Weibull model did not accurately
describe the biphasic pattern of emergence (data not shown).
Therefore, we divided the emergence period into pre- and
postlag phases and modeled cumulative percent emergence
with two successive Weibull functions (Table 1). Hydrother-
mal time was calculated with soil temperature and moisture
data produced with the Soil Temperature and Moisture
Model (STM2) (Spokas et al. 2007). We believe STM2

simulated the soil environment with a high degree of accuracy
because daily average soil temperatures calculated with actual
values were highly correlated with daily average soil
temperatures calculated with STM2 values (r 5 0.98, P ,
0.001).

To optimize emergence model fit, each model required a
unique base water potential. The base water potential was
initially extrapolated from the literature as 210 MPa and
then iteratively adjusted until the difference between predicted
and observed seedling emergence was minimized. The low
base water potentials in our emergence models indicate that
giant ragweed seedling emergence was insensitive to dry
conditions in the top 1 cm of soil. Although the 1-cm depth
was close to the overall mean emergence depth (1.29 6
0.19 cm), the maximum emergence depth was 7 cm.

Therefore, soil environment predictions did not accurately
reflect the microenvironment of each seed. Nonetheless, our
results indicate that giant ragweed emergence occurred during
periods in which the top layers of soil were relatively dry.
Giant ragweed seeds can be up to 11 mm wide and 14 mm
long, and are substantially larger than seeds of most annual
weed species (Sako et al. 2001). Other researchers hypothe-
sized that increased seed size enables seedling emergence under
low soil moisture because larger seeds produce longer radicles
that can access deeper water resources, contain relatively more
nutritional reserves, and have decreased metabolic rates
(reviewed by Leishman et al. 2000).

Seedling Emergence Model Validation. Two successive
Weibull models predicted seedling emergence in different
locations and tillage environments with reasonable accuracy
(Figure 3). The RMSE values of this experiment (8.2, 8.0,
and 9.5% cumulative emergence) compared favorably to other
seedling emergence models. Ekeleme et al. (2005) reported a
hydrothermal time seedling emergence model for tropic
ageratum (Ageratum conyzoides L.) with RMSE values ranging
from 5.8 to 10.1% cumulative emergence, and Roman et al.
(2000) developed hydrothermal time seedling emergence
models for common lambsquarters (Chenopodium album L.)
with RMSE values that ranged from 6.5 to 37.1% cumulative
emergence.

Prior to this experiment, the prolonged emergence period
of the giant ragweed biotype in Ohio agricultural fields was
not described by a model developed for the broader U.S. corn
belt (Schutte, unpublished data). The applicability of our
localized model outside of central Ohio is unknown, but, as
demonstrated in this experiment, model calibration with local
weed biotypes could be accomplished with one growing
season for model development followed by a growing season
for model validation. In addition to emergence pattern
variation on a broad scale, emergence periodicity may differ
among weed populations in nearby crop fields because
agronomic practices can influence levels of seed dormancy
(Clements et al. 2004). For example, frequent summer
fallowing increased seed dormancy (decreased germination
capacity at 20 C in darkness) of wild oat (Avena fatua L.) in
cultivated fields in Saskatchewan ( Jana and Thai 1987;
Naylor and Jana 1976). Organic farming was associated with
decreased seed dormancy (increased germination capacity at
30/25 C, 16/8-h photoperiods) and increased late-season
emergence of Powell amaranth (Amaranthus powellii S. Wats.)
among vegetable farms in central New York (Brainard et al.
2006). Field-to-field variation in seed dormancy and
emergence periodicity suggests a need for increasingly
localized weed emergence models.

Table 1. Development of a seedling emergence model in a no-tillage, fallow field in South Charleston, OH. The study site had a 19-yr history of giant ragweed
infestation in a corn–soybean rotation. Emergence was determined at weekly intervals from March 1 to September 1 during 2001, 2002, and 2003. The four-parameter
Weibull model was fit to cumulative percent emergence plotted as function of day of year with hydrothermal time (hHT) superimposed on the x-axis.

Emergence perioda

Weibull model parametersb hHT base values
Root-mean-square errorc

(% cumulative emergence)M z c k Tb (C) yb (MPa)

Prelag phase 60 60 1.60 2.7 3 1024 2.0 2 10 9.17
Postlag phase 40 600 1.23 6.0 3 1024 2.0 2 30 4.95

a The emergence period was divided into two phases that were separated by the lag in cumulative percent emergence that occurred each year during early May.
b Weibull models were in the form Y 5 M{1 2 exp[2k(hHT 2 z)c ]}, where Y is the cumulative percent emergence, M is the asymptote, k is the rate of increase, hHT is

hydrothermal time accumulated from March 1, z is hHT of first emergence, and c is a curve shape parameter.
c Root-mean-square error provides an indication of the typical difference between predicted and actual values.
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There are several approaches to emergence modeling, and
differences among them include the degree of developmental
complexity (Forcella et al. 2000; Grundy 2003). One
modeling technique utilizes observations of emergence during
past growing seasons to produce predictions based on the day
of year (Egley and Williams 1991; Ogg and Dawson 1984).
Day-of-year emergence models can be straightforward to
develop, but their predictions can fail during years when
atypical weather occurs during the normal emergence period.
Another emergence modeling technique separately quantifies
the components of emergence (seed dormancy loss, seed

germination, and pre-emergence seedling growth) over a range
of controlled conditions, then extrapolates the results to field
settings (Benech-Arnold and Sánchez 1995; Vleeshouwers
1997). These reductive seedling emergence models are
responsive to atypical weather, but their development requires
extensive experimentation.

Hydrothermal time and thermal time emergence models
that base predictions on field observations during previous
growing seasons offer relatively robust predictions and simple
development (Forcella et al. 2000). Compared to thermal
time, hydrothermal time calculations require additional data
that can be difficult to obtain (Myers et al. 2004); however,
the extra information from hydrothermal time may improve
seedling emergence predictions (Grundy and Mead 2000).
Data acquisition for hydrothermal time calculations is eased
by soil environment models, such as STM2, that simulate the
soil environment based on readily available information.
Simplicity of hydrothermal emergence model development
may facilitate relatively rapid development of localized
emergence forecasts for species that exhibit biotype variation
in seasonal emergence patterns.

Potential Application of Results. The emergence model
presented in this article can be used as a management decision
tool for a giant ragweed biotype with a prolonged period of
seedling emergence. Long-term (i.e., several months) emer-
gence forecasts indicate how lasting residual herbicides need to
be for control of giant ragweed. Short-term (i.e. 1-wk)
emergence forecasts provide information on the optimum
time for postemergence herbicide applications and mechanical
control procedures.

In addition to immediate implications on giant ragweed
management, the model presented in this article points to
future research projects that may improve giant ragweed
management in the long run. We propose research on delayed
planting of summer annual crops as a tactic to control giant
ragweed. This proposal is based on the following assumptions:
1) late-season emergence will occur every year, and 2)
seedlings that emerge after crop emergence will be compet-
itive, reproductive, and difficult to control (Gibson et al.
2005; Harrison et al. 2001; Webster et al. 1994). Therefore, a
practical solution for reducing giant ragweed populations is to
minimize the percentage of seedlings that emerge after the
crop. Furthermore, the emergence model technique provides a
relatively efficient method to monitor giant ragweed popula-
tions for change in emergence patterns over time. This could
improve our understanding of weed evolution and help
identify important management factors that most strongly
select for different emergence biotypes.

Finally, the emergence model presented in this article can
be improved by coupling emergence predictions with data on
the number of germinable seeds in the giant ragweed
seedbank. Such a model would predict giant ragweed
emergence periodicity and density, thus providing a more
complete emergence forecast.

Sources of Materials

1 HOBO H8H Pro Series temperature data loggers, Onset, P.O.
Box 3450, Pocasset, MA 02559-3450.

2 SAS software for Windows, Version 9.1.3, SAS Institute Inc.,
Cary, NC 27513.

Figure 3. Hydrothermal seedling emergence model validation in fallow fields at
South Charleston, OH under tilled and no-tillage conditions, and at Columbus,
OH under no-tillage conditions. Solid lines represent predicted emergence with
the use of model parameters presented in Table 1. Closed circles represent
observed emergence and are the means of four replicates with standard errors.
Root-mean-square error (RMSE) values are in units of percent cumulative
emergence.
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